

Bilkent University

Senior Design Project

Etymøn: A Deep-Learning Application for Etymological Clustering
of Words

Low-Level Design Report

Nashiha Ahmed, Mert İnan, Cholpon Mambetova, Utku Uçkun

Supervisor: Prof. Mehmet Koyutürk
Jury Members: Prof. Uğur Doğrusöz and Prof. Çiğdem Gündüz Demir

Low-Level Design Report

February 12, 2017

This report is submitted to the Department of Computer Engineering of Bilkent University

in partial fulfillment of the requirements of the Senior Design Project course CS491/2.

Table of Contents

Introduction 3

Purpose of the System 3

Object Design Trade-Offs 3

Interface Documentation Guidelines 4

Engineering Standards 5

Definitions, Acronyms, and Abbreviations 5

Packages 6

Class Interfaces 7

Machine Learning Model Design 12

Deep Learning Approach 12

Graph Alignment Approach 12

Dynamic Programming Approach 12

Word Embeddings Approach 13

References 13

2

Low Level Design Report

Etymøn: A Deep-Learning Application for Etymological Clustering of Words

1. Introduction
Etymøn is an analysis and tracing tool for word origins in all languages. It will be used to

review current etymological language families and if possible find new connections that were

not already present in current taxonomy. It will accomplish this using a deep learning

approach.

In the following sections, a brief description of the system and the system requirements are

discussed. In addition, Etymøn’s low-level design is also detailed.

1.1. Purpose of the System

Current etymological analyses rely on pattern matching or tracings between different

languages by experts in linguistics [1], yet it may be cumbersome or even improbable to

detect word origins in situations where direct links cannot be observed between two different

words. In this case, Etymøn will pose an advantage as it will be using a large corpus of data

in order to match words in any given language.

Various studies carried out by linguistic experts and historians improved the understanding

of language and its origins [2]. However, there is still “room for improvement” in the field.

Currently, most of the studies target the Proto-Indo-European language family [2]. There is

sparse research done for other languages, and there is not a single, unified resource for this

information. Most of the information is scattered online or among other forms of literature.

Since there is no similar project in the market yet, our software will be designed from

scratch, which would make it a greenfield project. However, we will use other existing

algorithms to build our software, such as deep learning algorithms among others that will be

specified further in the report.

1.2. Object Design Trade-Offs

Our system relies on working Augmented Reality software, Object Recognition software, and

word databases online. We will be reusing existing packages and libraries, since our system

is complicated and building these will take more time than is allotted to us to meet the

project deliverable deadline. The trade-off is that it may not be completely compatible with

our system, which may lead to data inaccuracies or incompleteness.

3

1.3. Interface Documentation Guidelines

Naming conventions will be used to make the development and design phases cohesive and

understandable by all stakeholders in the projects. The following table will detail the naming

and usage conventions that will be used.

Identifier Type Rules for Naming Examples

Packages Package names are always written starting

with a capital letter. If package names are a

combination of multiple words, each word

starts with a capital letter. Abbreviation letters

are all capitalized. Package names are not

lengthy but concise and meaningful.

package EtymonUI;

Classes Class names follow the same naming

conventions as package names. Abbreviations

are only used when universally understood but

are generally avoided to convey meaning

clearly. Class names can be a combination of

numerals and letters but not special

characters.

class WordCloud;

Interfaces Interface names follow the same naming

conventions and class names.

interface

LanguageSea;

Methods Method names are verbs unlike package, class,

and interface names. Method names start with

a lowercase letter with first letter of internal

words capitalized. Method names also need to

be meaningful and concise and appropriate to

understanding the method’s purpose.

createCloud();

Variables Variable names are also generally nouns. They

start with lowercase letters, as methods and

internal words start with an uppercase letter.

Variable names may contain special characters

but must not start with special characters.

Variable names too must be meaningful but

concise. Variables are all be initialized to avoid

potential errors.

int wordCount;

ArrayList<String>

wordList;

Constants Constants names have letters all capitalized

and initialized. Internal words are separated by

underscore character.

static final int

MAX_WORD=1000

00;

Whitespace In general, whitespace is used when needed to

improve clarity of code. For example, the next

line is used after the introduction of a

branching statement. Spaces are used after an

operator but can also be put before an

operator.

for(int i = 0; i <

100; i++)

{

createWordCloud();

}

Indentation Indentation in our code is 4 spaces. If code is

contained within a larger element, it is

indented for code clarity.

Brackets Brackets are put on separate lines to help

visual clarity on reading and writing code

segments.

4

1.4. Engineering Standards

The engineering standards we will be using are as follows:

● To model our software, Unified Modeling Language (UML) is used.

● IEEE engineering standards are used throughout the implementation and design of

the project.

● The ACM Code of Ethics and Professional Conduct will also be enforced.

Suggestions on the enforcement plan were given in the Project Specifications

Report.

1.5. Definitions, Acronyms, and Abbreviations

Some definitions of Etymøn jargon are provided.

● The Language Sea is the first view that the user is greeted with. It is a zoomed out

map of the most abundant words graphed together to make a sea like shape.

Figure 1 This figure depicts a wave-like pattern that will be like the Language Sea. [3]

Figure 2 This figure is another clustered space that will be like the Language Sea. [3]

● The Word Cloud is a local graph for words clustered close to one another.

5

Figure 3 This figure shows a local graph for the English word, “life”. Its origin is identified to be “leyp”

in the Proto-Indo-European language family, and two descendent words —one in Sanskrit and one in

Greek— are given next to the origin word.

2. Packages

Figure 4 This figure is the UML diagram for the packages of the Etymon system.

User Interface package contains the WebGL and other graphics component codes. It

includes specifically the mobile interface, web interface. Artificial Intelligence package

represents the artificial intelligence portion of the whole system. It includes the Word

Database and the Machine Learning related classes. Application Logic package represents

the application logic of the Etymon system. It includes Augmented Reality Management,

Query Management, and Object Recognition.

6

3. Class Interfaces
In this section of the report, we will be presenting the in-depth look to individual classes of

the Etymon system. Their functions and attributes are described. Several design patterns

are also described in the following paragraph. Final class diagram can be seen in Figure 5

and 6.

Figure 5 This figure shows the UML diagram for the entity classes of the Etymon system.

7

Figure 6 This is the UML class diagram representing the controller classes of Etymon.

Certain design patterns are chosen for objects of the Etymon. EtymonController and

WebGL will be singleton classes as they will be initialized only once. LanguageSea object

will follow an object pool pattern. Word class will be a prototype class and the

GraphicsController will be an adapter class.

Class name LanguageFamily

Attributes mostAbundantWords: The most used words in this
language family

languages: Languages that are part of the specific
language family.

Functions getLanguages(): Returns the languages within the
specific language family.

addLanguage(newLanguage): Adds a new language to
the specific language family.

getMostAbundantWords(): Returns the most abundant
words within the specific language family.

addMostAbundantWords(word): Adds a new word to the
most abundant words of specific language family.

8

Class name Language

Attributes words: all the words present in this language
mostAbundantWords: The most used words in this
language

Functions addWord(word): Adds a new word to the specific
language.

getWords(): Returns the words within the specific
language.

getMostAbundantWords(): Returns the most abundant
words within the specific language.

addMostAbundantWords(word): Adds a new word to the
most abundant words of specific language.

Class name WordCloud

Attributes word: The specific word that the word cloud is
built upon.

relatedWords: Related words to the specific word

Functions getWordCloud(word): Returns the related words,
ancestor and descendant information of a given

word.

Class name LanguageSea

Attributes languageFamilies: The language families that are
currently included in the language sea.

Functions addLanguageFamily(language): Adds a new language
to currently displayed language sea.

getLanguageFamilies(): Returns the language
families.

9

Class name Word

Attributes definition: Dictionary definition of the word.
context: Context of the word.
features: Certain features extracted from the word
for machine learning purposes.

languageFamily: Language family which the word is
part of.

Functions getWord(): Returns the word itself
getRelatedWords(): Returns the related words for
the specific word.

getAncestor(): Returns the ancestor word of the
specific word.

Class name EtymonController

Attributes languageSea: The language sea consists of all the
languages and words that are connected to each

other.

Functions startEtymon(): Initiates the program, connects to
databases

searchWord(Word): Queries a word search in Etymon
database and displays the results

trainMLModule(): Initiates the clustering
algorithm on database

hallucinate(Word): Creates new words
hallucinateML(Word, List): Runs the machine
learning in hallucination mode, using generative

LSTM.

getRandomWord(): Chooses and displays a random
word from the Etymon database.

generateLanguageSea(lang1, lang2...): Generates
and displays a language sea with the given

languages.

generateWord(Word): Runs the new word through the
machine learning algorithm.

generateWordCloud(Word): The newly added word is
run through the ML algorithm to generate

connection with other words and form a cloud.

scanObject(): Scans the object using camera and
returns its name. Will be used to search a word

using the object recognition algorithm.

zoominAR(): Zooms the image in AR.

generateWordCloudAR(): Generates and shows the

10

word cloud of a specific word as AR.

Class name WebGL

Attributes graphics: The actual graphics to display (language
see, zoomed-in word cloud, etc.)

Functions renderGraphics(): Draws the language sea on
display.

zoomIn(Word): Finds and zooms in the the queried
word.

zoomOut(): Display returns to the initial state.
addWord(Word): User requests a new word to be
added to the Etymon database.

displayLanguageSea(): Displays the language sea.
displayLanguageSea(lang1, lang2...): User chooses
which languages will be displayed in the language

sea.

hallucinate(): generates the graphics for
hallucination mode.

Class name GraphicsController

Functions getLanguageSea(): Gets the language sea from
Etymon database to be used in WebGL.

getLanguageSea(lang1, lang2...): Retrieves some of
the languages that will be displayed in the

language sea.

getWord(word): Returns the word data on a
scpecific word.

getWordCloud(): Gets the word cloud data from
database.

getHallucination(): Retrieves the hallucination
data.

11

4. Machine Learning Model Design
In this section four different algorithms that can be used as the machine learning

components of Etymon will be discussed. Each of their advantages and disadvantages will

also be analyzed. Logistic analyses of all the models is also included to decide on which

algorithm to deliver in the end product.

4.1. Deep Learning Approach

Using Deep Neural Networks (DNN), ancestor words of current words from

different languages of today can be found. This is a generative model, as it learns

the training information and then generates a learning method by itself to be

applied to other cases. In the end, this can create proto-words—ancestor

words—can be created using Long Short-Term Memory (LSTM) models.

In the training part of the DNN, labels will be ancient words that are already known

and the training set will consist of their descendant words in several different

languages. All of the word data will be downloaded from wiktionary

Proto-Indo-European word list [4].

The main advantage of this model is that it creates a simple implementation of the

machine learning part. Furthermore, no manual feature extraction is necessary

with this approach, as the words would be provided to the DNN and the output will

be received after the training and testing periods. The main disadvantages are that

the data classes are unbalanced and there is a small amount of data, which may

reduce the accuracy of the DNN. Even more, the training period would be long for

a DNN.

4.2. Graph Alignment Approach

Recent research in applied graph theory is focusing on graph alignments of

different social media to identify missing components in another graph. This same

concept can be used in identifying missing words in different languages and in

identifying ancestor words.

Using wiktionary data for nearly five million words in the English section, graphs

can be generated for multiple languages. Edges in the node will be connecting

different words in the same language with which the current node has a link in the

wiktionary page. Then the machine learning model can look at links between two

graphs after alignment in order to see the word resemblances

Even though this model can identify the links between words of different

languages, it does not fully create a proto-word, which would be a shortcoming as

Etymon is also responsible for giving root information. Furthermore, the wiktionary

data may not depict correct linguistic links in all of its word entries

4.3. Dynamic Programming Approach

In regular linguistic epigenetics, a method called comparative method is utilized to

find the ancestry information of a language. This method is generally automated

by using a dynamic programming strategy. This approach also borrows from the

bioinformatics community by using the “edit distance” solution of dynamic

12

programming [5]. With this approach, two words in two languages can be

compared at the same time with one another. One language can also be a

proto-language. Hence, a word’s edit distance can be found from its proto-word to

a real word in today’s languages. Using this strategy, we will be generating

multitudes of dynamic programming tables. Hence, we can use the patterns found

in these tables as machine learning features.

One drawback of this approach can be that it can only work with borrowed words

in different languages, or it can favor borrowed words than any other word as the

characters will have very small edit distances. Furthermore, every new word would

be needed to be compared with every other word in the other language.

4.4. Word Embeddings Approach

Like with the graph alignment strategy, each word can be clustered according to

their meanings and can be transformed into a vector using a tool like word2vec

[6]. This would create a hyperdimensional space, and these spaces can be created

for two different languages. In the end, the differences between these two spaces

can be used to predict the ancestor words.

The main advantage of this method is that it successfully transforms words into

vectors and multilingual forms of the word2vec can be employed.

All of these approaches are possible, yet doing them all at the same time would

require a lot of time that can exceed the delivery time of the project. As a result,

currently the most feasible approach—pragmatic logistics-wise—is the deep

learning approach.

5. References
[1] E. P. Hamp and J. Lyons, “Linguistics,” Encyclopædia Britannica, 10-Mar-2017. [Online].

Available: https://www.britannica.com/science/linguistics/The-comparative-method. [Accessed:
12-Feb-2018].

[2] “About,” Ethnologue. [Online]. Available: https://www.ethnologue.com/about. [Accessed:
12-Feb-2018].

[3] C. Diagne and N. Barradeau, Free Fall, https://artsexperiments.withgoogle.com/freefall/wave.
[Accessed: 09-Oct-2017].

[4] “Appendix:List of Proto-Indo-European roots,” Appendix:List of Proto-Indo-European roots -
Wiktionary. [Online]. Available:
https://en.wiktionary.org/wiki/Appendix:List_of_Proto-Indo-European_roots. [Accessed:
12-Feb-2018].

[5] M. P. Oakes, “Computer Estimation of Vocabulary in a Protolanguage from Word Lists in Four
Daughter Languages,” Journal of Quantitative Linguistics, vol. 7, no. 3, pp. 233–243, Jan.
2000.

[6] Dav, “dav/word2vec,” GitHub, 18-Jan-2018. [Online]. Available:
https://github.com/dav/word2vec.git. [Accessed: 12-Feb-2018].

13

